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ABSTRACT

Many textures are characterizable as a collection
of primitive elements arranged over a background field.
This paper defines an edge-based procedure for extracting
primitives from textures. The technique groups edges
into region boundaries by joining facing pairs of edge
points. A pilot evaluation is performed by examining

the usefulness of these primitives for texture classi-
fication.
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1. Introduction

The structural approach to texture analysis consists of
the extraction of meaningful texture primitives, defined as
connected regions satisfying certain properties, and the des-
cription of these primitives in terms of their attributes and
spatial interrelations. This model of texture as a segregation
of the visual field into primitives has considerable psycho-
physical support: see, e.g9., Beck's similarity grouping exper-
iments [l] and Julesz' work on cluster detection in random
patterns [2].

The descriptive and organizational aspects of the texture
problem given a set of primitives have been studied in order to
explore placement rule properties used in discrimination.
O'Callaghan [3]) developed techniques for finding the perceptual
boundaries in dot patterns and Stevens (4] used the same domain
to locate locally parallel strings of dots. Others have used
edges as primitives, investigating both synthetic and real-world
texture discriminability using statistical measures of the first
order (e.g., edge per unit area [5,6] and the ratio of edge
orientation to length per unit area [(7]) or second order (e.qg.,
generalized cooccurrence matrix features from edge orientation
[8]). These last methods are more structural-statistical
hybrid approaches, however, than purely structural ones.

To date, texture primitive extraction methods have been

predominantly region-based, emphasizing gray level grouping




rules for defining areas which are homogeneous with respect
to brightness. Tsuji and Tomita (9] define primitives as
connected components of constant gray level. Maleson et al.
[10) use a priori defined simple convex polygons of various
sizes, shapes, and orientations as primitives, choosing the
maximal best fit based on gray level constancy. Wang et al.
[11] extract primitives by various thresholding schemes, each

connected component of above threshold points defining a region.

While edge-based methods have been previously used 1in
statistical approaches to texture (see above), the dual to
region-based primitive extraction, i.e., edge grouping for
delimiting regions by their boundaries, has not been adequately
studied. Strong and Rosenfeld (12] developed a technigque using
a propaqgation process for coloring in region interiors from
edges. Marr's primal sketch is computed (in part) by grouping
edge and line detector outputs into long segments (this proce-
dure is called "curvilinear aggregation") [(13], but the repre-
sentation stops short of producing closed curves, delaying their
extraction until information about the depth, orientation and
discontinuities of visible surfaces is made explicit in the

2% -D sketch. Zucker et al. [14] argue, on the other hand, ﬁ

that edges can often be used to delineate physical objects with-
out such higher level knowledge.
In this paper we address the texture primitive extraction

problem using an edge-based technique. Primitives are defined




as areas which are enclosed by edges, thus delimiting elements
by their boundaries rather than by properties of their inter-
iors. The method is evaluated in a pilot study in which a few
texture samples, taken from Brodatz [15] textures and three
LANDSAT geological terrain types, are clustered using first-

order statistics of region properties only.




2. Primitive extraction by edge point grouping

2.1 The approach

Methods for edge point grouping have been developed pri-
marily for the purposes of locating curves and streaks in
images. Both sequential tracking and parallel grouping tech-
niques have been devised (see {16] for a survey). For the

most part, two Gestalt heuristics are used for combining unit

edge segments 1nto long chains: edges which are proximal and
represent good continuation are locally consistent; other con-
figurations are inconsistent.

In texture primitive extraction, boundaries are known to
form closed contours, so we can add the heuristic of closedness.
In the continuous case, each point p on the boundary of a prim-
itive has a corresponding (nearest) boundary point q which is
on the opposite side of the region and is defined as follows.
Consider the ray with origin at p and orientation perpendicular
to the tangent line through p and towards the region's interior.
This ray must intersect the boundary again; q is defined to be
the nearest such intersection point. Two properties of this
definition are of interest. First, the relation "is an opposite
boundary point to” is not symmetric. Second, the line segment
pq must be entirely contained in the region. Figure 1 illustrates
this configuration.

In digital images, region boundaries are indicated locally

by gray level discontinuities and are detectable by any of a




variety of edge-detection operators. In this case, the analog
of an opposite boundary point pair is a pair (x,y) of anti~-
parallel edge points such that y is the closest edge point

in the gradient direction from x on x's dark side.

Given an image from which a set of antiparallel edge pairs
have been determined, the boundary formation problem is now
reformulated as how to group these pairs according to the areas
they surround. There are several possible ways of grouping edges
into boundaries from the descriptions associated with anti-
parallel pairs, e.g., using their locations, orientations, and
separations. One possibility would be to cluster the midpoints
of the pairs' line segments as they should form a kind of medial
axis for the region. However, since even in ideal figures these
midpoints need not be connected (see Figure 2), this approach
does not seem promising.

A second method is to group edge pairs based on the inter-
sections of the line segments that join antiparallel pairs. A
pixel is regarded as a possible interior point of a primitive if
it is on the line segment joining a pair of antiparallel edge
points. 1In practice, due to the presence of noise, giving rise
to missing and spurious edges, each pixel's likelihood of being
an interior point can be measured by the number of times that
it occurs on line segments joining antiparallel pairs. We now
describe in more detail the algorithm which implements this

method of primitive extraction.
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2.2 The algorithm

The algorithm for extracting dark primitives occurring on
a light background consists of several steps. Its description
will now be given in conjunction with its step by step perform-
ance on two small data sets. The first is a set of terrain
samples from a LANDSAT image of eastern Kentucky. Four 128 by
128 images were chosen from each of three geolcgical terrain
types, as shown in Figures 3a, 4a, and 5a. A second data set
was taken from four of the texture types in Brodatz [15]; the
images are shown in Figures 6a, 7a, 8a, and 9%9a.

The first step of the algorithm locates edges by applying
an edge detection operator to the image, followed by threshold-
ing to eliminate weak edges, and non-maximum suppression to
delete redundant responses to a single boundary. In this way
we obtain a "cleaned" edge map of potential boundary points on
which to do further processing.

In our experiments we have used a set of eight 3 by 3 masks
as shown in Figure 10 to determine the edge response at each
point. Edge magnitude is equal to the maximum response and edge
direction is taken parallel to the orientation of the corre-
sponding detector. Poin£s with edge magnitude less than a
threshold t were then set to zero; for the terrain textures we
used t=6 and with the Brodatz textures, t=3. These values of t
were chosen by hand; in general t should be chosen based on the

expected contrast of the primitives with the background. Non-




maximum suppression used a 1 by 3 neighborhood centered on
each point and oriented in the direction perpendicular to the
edge at that point. A point's edge magnitude was set to zero
if either neighbor had a larger edge magnitude. The result
of this step for the two data sets i1s shown as part b in
Figures 3-9.

Inﬁiﬁ: next stage, antiparallel edges are paired and region
interiors are filled in as follows. At each edge point a search
is made of the pixels on the ray oriented in the direction per-
pendicular to the edge's orientation and towards the edge's dark
side. If the first edge encountered is antiparallel* to the edge
point at the ray's origin, then every point on the line segment
joining the pair should be in the interior of a primitive. Given
an output array with dimensions equal to those of the input
picture , this pairing is recorded by incrementing each of the
output bins corresponding to points on the line segment. This
process is carried out for all edge points in the image. Notice
that if the search space is exhausted without finding an edge
point, or an edge with improper orientation is found, then no
contribution is made to the output array from the given edge
point.

Other search strategies for an edge's antiparallel point(s)
could also have been used, for example based on a sector emanating

from the edge. The simple one used here proved sufficient for

* 1f an edge with orientation 45i° is labeled i, then define
two edges with labels i and j to be antiparallel if j=i+43 mod 8,
i+4 mod B8, or i+5 mod 8.




this pilot study. If specific knowledge is available about
the expected size, shape, or orientation of primitives, then
further refinements of the search space could also be made.
For example, the maximum distance searched along the ray should
be determined by the maximum diameter of a primitive. For the
textures used here, search distance was limited to ten pixels.
The output array from stage two can be interpreted as a
function measuring the confidence that each point is part of
a primitive. Using this array, the final stage of the algo-
rithm produces a binary mask representing the primitives.
There are two ways of deciding that a point p is part of a
primitive. First, if p and most of its eight neighbors are
confident of belonging to a primitive, then p is called a
primitive point. Specifically, let the values of the points
surrounding point p be
a, a, a
ag a, a, where a,
a

e M, A [

is the value of p.

B, if aiso

G.1; 1if airl

For each a; let L, 0.2, if 31’2
0.5

1.0

d AE ai-3

, Otherwise
8

Then point p is a primitive point if L vik 1.
i=1




Since this weighting scheme is biased against points which
are on the border of a primitive, a weak region growing step
is next applied in order to add such points to the primitives.
specifically, if a point p is adjacent to a primitive point g
and the gray levels at these two points are identical, then p
too is called a primitive point. This procedure also fills in
small holes in primitive elements. The primitives extracted by

this method are displayed as part c in Figures 3-9.
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3. Evaluation

The regions extracted by the procedure dewcribed in Section
2 for the textures shown in Figures 3-9 appear to be reasonable
primitives. A further test was conducted to evaluate their
usefulness for texture classification. In this test first-
order statistics of the primitives in the two data sets were
measured and plotted in order to subjectively determine the
separability of the classes. Six properties of the primitives
were measured: area, perimeter, dispersedness, elongatedness,
eccentricity, direction of major axis, and average gray level.

The area of a primitive is defined to be the number of
pixels comprising the region. Perimeter is the number of bound-
ary pixels. Dispersedness is defined as the ratio of the square
of the perimeter to the area. Eccentricity is defined as the
ratio of a primitive's major to minor axis of inertia; and
direction of major axis is the angle that the major axis makes
with the vertical. See [(11] for more detailed descriptions of
these properties.

Following Wang et al. [1l1], two features were derived from
each property value histogram for each texture window as des-
criptors of the texture. Specifically, for each property and
each image the mean and standard deviation of the values for
all primitives with area greater than 9 were computed. These
feature values are plotted in Figures 11 and 12 for the terrain

and Brodatz texture data sets, respectively.
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For the Brodatz texture samples, those features which
separated the four types best are seen to be: mean of primi-
tive area, mean of perimeter, and standard deviation of
average gray level. 1In each case the four classes are
separated or nearly separated from each other. The separa-
bility of features derived from the terrain textures was
less clear-cut, but the standard deviation of area feature .
did nearly distinguish all three types. Several other fea-
tures separated two of the terrain tynes. These results are
summarized in Table 1.

In conclusion, this pilot study shows that very simple
first-order fcutures discriminate well between the pairs of
textures in two separate cdata sets. These results are

better than those obtained using any of the threshold-based

extraction schemes proposed in [11].
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Concluding remarks

A new method of extracting texture primitives based on
pairing antiparallel edge points has been described. The
success of the approach depends primarily on the sufficiency
of the edge map in surrounding the interiors of primitives.

In the examples given the procedure proved quite robust in
"filling in the gaps" on a primitive's boundary and ignoring
noise edge responses. Subjectively, the primitives obtained
conform well to meaningful regions in the textures. This 1is
substantiated by the successful results obtained in separating
the texture types using first-order statistics derived from
these primitives.

The applicability of this technique to the gencral problem
of object extraction is exhibited in Figure 13. Shown are

four FLIR 1images, each containing a single target (visible as

a small dark blob), and the results of applying the algorithm

to these images. In each case the target was properly extracted.
In general, in situations where thresholding-based schemes are
inappropriate for segmentation, the method presented here provides

a promising alternative.
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Figure 1. A primitive boundary point p and its
opposite boundary point q.

Figure 2. A primitive in which the midpoints of
lines joining opposite pairs of boundary
points (dotted lines) are not connected.
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Figure 9. (a) Wool (plate D19), (b) edge m

(¢) primitives extracted.
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Figure 11.
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Features derived from the terrain primitives.

L denotes Lower Pennsylvanian shale, M denotes
Mississippian limestone and shale, and P denotes
Pennsylvanian sandstone and shale.
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Figure 13. (a) Four target windows taken from
Forward-Looking InfraRed data base,
: (b) edge maxima, (c¢) objects extracted.




Feature

Area mean
Area s.d.

Perim. mean

Perim. s.d.
2

P /A mean

PZ/A s.d.

Eccen. mean

Eccen. s.d.

Orient. s.d.

Gray level mean

Gray level s.d.

Table 1.

Brodatz textures

R/S/G/W
R,S,G/W
R,S/G/W
R,S,G/W
R,S,G/W
R,S,G/W
poor
poor
poor
R,S/G/W

R/G/S,W

Terrain textures

P/L ,M
P/L/M
P/L M
P/L M
P/L,M
P/L,M
poor
poor
P,L/M
L/P,M

P/L,M

Summary of class separability results;

"/" means "separates”

(ties are considered

separable). G denotes grass, R raffia,

S sand, and W wool; L means Lower Pennsyl-
vanian shale, M Mississippian limestone
and shale, and P Pennsylvanian sandstone

and shale.
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